Dusty gas with one fluid
نویسندگان
چکیده
In this paper, we show how the two-fluid equations describing the evolution of a dust and gas mixture can be re-formulated to describe a single fluid moving with the barycentric velocity of the mixture. This leads to evolution equations for the total density, momentum, the differential velocity between the dust and the gas phases and either the dust-to-gas ratio or the dust fraction. The equations are similar to the usual equations of gas dynamics, providing a convenient way to extend existing codes to simulate two-fluid mixtures without modifying the code architecture. Our approach avoids the inherent difficulties related to the standard approach where the two phases are separate and coupled via a drag term. In particular, the requirements of infinite spatial and temporal resolution as the stopping time tends to zero are no longer necessary. This means that both small and large grains can be straightforwardly treated with the same method, with no need for complicated implicit schemes. Since there is only one resolution scale the method also avoids the problem of unphysical trapping of one fluid (e.g. dust) below the resolution of the other. We also derive a simplified set of equations applicable to the case of strong drag/small grains, consisting of the standard fluid equations with a modified sound speed, plus an advection-diffusion equation for the dust-to-gas ratio. This provides a simple and fast way to evolve the mixture when the stopping time is smaller than the Courant timestep. We present a Smoothed Particle Hydrodynamics implementation in a companion paper.
منابع مشابه
Three-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions
The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...
متن کاملDusty gas with one fluid in smoothed particle hydrodynamics
In a companion paper we have shown how the equations describing gas and dust as two fluids coupled by a drag term can be re-formulated to describe the system as a single fluid mixture. Here we present a numerical implementation of the one-fluid dusty gas algorithm using Smoothed Particle Hydrodynamics (SPH). The algorithm preserves the conservation properties of the SPH formalism. In particular...
متن کاملFlowing dusty plasma experiments: generation of flow and measurement techniques
A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a Π-shaped dusty plasma experimental device with micron size kaolin/ melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary du...
متن کاملTwo-phase Boundary Layer Flow, Heat and Mass Transfer of a Dusty Liquid past a Stretching Sheet with Thermal Radiation
The problem of two-phase MHD boundary layer flow, heat and mass transfer over a stretching sheet with fluid-particle suspension and thermal radiation has been studied. The effect of mass transfer in dusty fluid over a stretching sheet is considered for the first time. The governing equations are reduced to a set of non-linear ordinary differential equations under suitable similarity transforma...
متن کاملDusty gas model of flow through naturally occurring porous media
In this article, we develop a set of partial differential equations describing the flow of a dusty fluid in variable porosity media. The developed equations take into account the effect of the porous microstructure on the flowing phases. We presented and overview of the equations governing the flow of a dusty gas in various type media, including that in naturally occurring porous media. Numeric...
متن کاملThe magnetisation of protoplanetary disks
The remanent magnetisation of meteorite material in the solar system indicates that magnetic fields of several Gauss are present in the protoplanetary disk. It is shown that such relatively strong magnetic fields can be generated in dusty protoplanetary disks by relative shear motions of the charged dust and the neutral gas components. Self-consistent multi-fluid simulations show that for typic...
متن کامل